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Abstract. A Sierpinski gasket resistor network is considered in which the basic microscopically
anisotropic resistance distribution has a hierarchical pattern. The system is shown to undergo
a transition from macroscopic isotropy to macroscopic anisotropy as a hierarchical parameter
R is varied. ForR < Rc, the system may restore macroscopic isotropy, regardless of the
degree of anisotropy on the microscopic scale. ForR > Rc, on the other hand, the system
remains anisotropic on the macroscopic scale due to the basic anisotropy on the microscopic
scale. The degree of macroscopic anisotropy depends on both the hierarchical parameterR and
the microscopic anisotropy.

Recently, Barlow and co-workers [1] reported a new type of restoration of macroscopic
isotropy in fractal systems with microscopic anisotropy. The phenomenon is unique in the
sense that it is absent in uniform media such as regular lattices or Euclidean spaces, while it
is claimed to be universal since it can be observed in many physical setups on a wide class
of fractal systems [1]. In the present study, we address the question whether or not such a
type of restoration of macroscopic isotropy in fractal systems with microscopic anisotropy
can be observed if the fractal possesses hierarchical structure.

The physical properties of hierarchical structures have attracted much attention in recent
years, since these structures are believed to arise in various physical contexts (see [2]
for a review). Even in one-dimensional (1D) systems, studies concerning the hierarchical
structures have revealed a wealth of interesting features. For instance, in the case of
diffusion, it has been shown that a hierarchical system can undergo a phase transition from
anomalous to ordinary diffusion, as well as display anomalous diffusion behaviour, when the
hierarchical parameterR is varied. HereR is a positive paratmeter describing the hierarchy
of physical quantities such as transition rates, interactions and resistances (see, e.g., [3]).
In the case of directly measurable quantities, the study onAC hopping conductivity of a
1D hierarchical system showed that the conductivity can have rather different types of low-
and high-frequency behaviour depending on the value ofR [4]. For fractal systems, on the
other hand, the hierarchical structure can be provided, more naturally, by the fractal nature
of some fractals such as the Sierpinski gasket and regular Vicsek fractals. A study of the
relaxation problem in a fractal system with a hierarchical array of barriers also indicated that
a transition from anomalous to normal diffusion occurs asR varies [5]. More recently, it was
found that all non-degenerate transverse vibrational modes on a regular Vicsek fractal with
a hierarchical pattern of nearest-neighbour interactions may exhibit non-decay (extended) or
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power-law decay spatial scaling behaviour depending on the value ofR [6]. Now, a natural
question is whether or not the new type of restoration of macroscopic isotropy in fractal
systems with basic (microscopic) anisotropy can be observed in the fractals with hierarchical
structure. To answer this question, we consider, as an example, a Sierpinski gasket resistor
network with microscopic anisotropy and a hierarchical pattern in resistance distribution. A
transition from macroscopic isotropy to macroscopic anisotropy is found as the hierarchical
parameterR is varied. ForR < Rc, the system may restore macroscopic isotropy, regardless
of the degree of anisotropy on the microscopic scale, while forR > Rc, the system stays
anisotropic on the macroscopic scale due to the basic microscopic anisotropy, and the
degree of macroscopic anisotropy is governed by the hierarchical parameterR as well as
the microscopic anisotropy.

The model treated here is similar to that of [5] in studying the diffusion problem; the
anisotropy on the basic microscopic scale is introduced in a way analogous to that of [1].
The zero-stage Sierpinski gasket resistor network is a triangle. We associate a resistor of
resistance 1 with the bond in the horizontal direction and a resistor of resistancer with each
of the remaining two bonds of the triangle (see figure 1(a)). Herer 6= 1 parametrizes the
basic microscopic anisotropy. The hierarchy for the fractal resistor network is introduced in
the first- and the higher-stage fractals. In the present model, a first-stage Sierpinski gasket
network is constructed by assembling three copies of the zero-stage network at the three
corners of a regular triangle (see figure 1(b)). However, in contrast to the model studied
by Barlow and co-workers [1], in our fractal network, there exists resistance for each link
connecting any two adjoining zero-stage fractal networks. The hierarchy and anisotropy are
introduced by setting the resistance of the link in the horizontal direction equal toR, while
each of the remaining two links connecting the zero-stage fractal networks is associated with
resistanceRr. The higher-stage fractal network is built by a similar aggregation pattern.
That is, an(n + 1)th-stage fractal network is made by assembling three copies of thenth-
stage fractal networks at three corners of a regular triangle. Every twonth-stage fractal
networks are connected by a link with resistance ofR(n+1) (R(n+1)r) if the connecting link is
along the horizontal (other) direction(s). See figure 1(c) for a second-stage fractal network
constructed from three first-stage networks. Note that if one setsR = 0, the present model
reduces to that studied in [1].

Figure 1. Construction of a Sierpinski gasket resistor network by aggregation: (a) stage 0,
(b) stage 1 and (c) stage 2. In thenth-stage network, every two(n − 1)th-stage networks are
connected by a link with resistanceRn (horizontal direction) orRnr (other directions).
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By repeated use of the star–triangle transformation relations, anynth-stage fractal
network can be transformed into a simple equivalent triangle network. LetXn denote
the resistance for the bond in the horizontal direction of such a triangle network obtained
from annth-stage one, andYn be that for the bond in other directions. It follows from the
definition that

X0 = 1 Y0 = r . (1)

Define Hn = Xn/Yn, the logarithm of which, lnHn, is used to measure the degree of
anisotropy of thenth-stage fractal network composed of resistance elements with basic
microscopic anisotropy parametrized byH0 = X0/Y0 = 1/r. From the self-similarity of
the fractal structure, one can easily derive the recursion equations forYn andHn, by using
the star–triangle relations, as follows:

Yn+1 = (2Hn + 3)Yn

(Hn + 2)
+ Rn+1r (2)

Hn+1 = (6H 2
n + 4Hn)Y

2
n + (2 + Hn)(1 + 2Hn + 4rHn)R

n+1Yn + (2 + Hn)
2rR2(n+1)

(H 2
n + 6Hn + 3)Y 2

n + (2 + Hn)(1 + 4r + 2rHn)Rn+1Yn + (2 + Hn)2r2R2(n+1)

(3)

while Xn+1 is readily given byXn+1 = Hn+1Yn+1. Starting from the initial conditions (1),
by repeatedly using the recursion equations, one can find thatHn goes to a stable fixed
point, the value of which depends on the value ofR as described below.

(i) For 0 < R < Rc = 5
3, the first term on the right-hand side of (2) is dominant. It is

thus not difficult to show [1] that

lim
n→∞ Hn = 1 (4)

with the rate of restoration of isotropyHn+1 − 1 ≈ 4
5(Hn − 1) andXn andYn satisfying the

scaling behaviour

Xn+1 ≈ Yn+1 ≈ 5
3Xn (5)

for largen. The macroscopic isotropy is restored independent of the value of microscopic
anisotropy measured byr as in the system withR = 0 [1]. Figure 2 gives the calculated
behaviour of lnHn for systems with two typical values ofR < Rc and different values of
r, from which the restoration of macroscopic isotropy is clearly observed regardless of the
basic anisotropyr.

(ii) For R > Rc = 5
3, one has

lim
n→∞ Hn =

√
1 − (R − 2)(2r − 1)

2(R − 1)r
≡ h (6)

with

1 = (R − 2)2(1 + 2r)2 + 4r(3R − 5) (7)

and

2h + 3

h + 2
6 R . (8)

The rate of approach to the fixed pointh is given byHn+1 − h ≈ η(Hn − h), whereη, a
function of R and r, is smaller than4

5, suggesting thath should be a stable fixed point of
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Figure 2. ln Hn as a function of stage numbern for the fractal resistor network with two typical
values ofR < Rc = 5

3 and different values ofr. Restoration of macroscopic isotropy is clearly
observed regardless of the value ofr.

Figure 3. ln Hn as a function of stage numbern for the fractal resistor network with two typical
values ofR > Rc and different values ofr. It can be seen that the system remains anisotropic
on the macroscopic scale due to the basic anisotropyr 6= 1, while the degree of macroscopic
anisotropy, measured by lnh and shown by the horizontal dashed lines in the figure, depends
on bothR andr.

the recursion relations (2) and (3). As a result, one obtains the following asymptotic scaling
behaviour forXn andYn:

Xn ≈ hYn ≈ h(h + 2)rRn+1

(h + 2)R − (2h + 3)
. (9)
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Figure 4. The order parameter,ξ ≡ | h−1
h+1 |, as a function of the hierarchical parameterR for

some different values ofr. An isotropy–anisosotropy transition is observed atR = Rc = 5
3 .

It can be seen that the degree of macroscopic anisotropy, measured by lnh, as well as the
rate of approach to the fixed point, depends on both the hierarchical parameterR and the
basic anisotropyr. Figure 3 shows the calculated behaviour of lnHn for systems with two
typical values ofR > Rc and different values ofr, from which one can find an apparentr

andR dependence of the macroscopic anisotropy lnh.
It is therefore concluded that the fractal network undergoes a hierarchy-induced transition

from macroscopic isotropy to macroscopic anisotropy as the hierarchical parameterR is
varied. Defineξ ≡ | h−1

h+1| as an order parameter, which is normalized in such a way that
its value ranges from 0 to 1 for allR and r. Figure 4 displays the order parameterξ as a
function of R for some values ofr < 1 (the cases withr > 1 are similar). An isotropy–
anisosotropy transition is observed atR = Rc = 5

3. In addition, it follows from (6) that

ξ ≡
∣∣∣∣h − 1

h + 1

∣∣∣∣ ≈ 9|1 − r|
2(1 + 2r)

(R − Rc) asR → R+
c (10)

implying that the isotropy–anisosotropy transition should be of second order.
In summary, we have studied a Sierpinski gasket resistor network which has hierarchical

and microscopically anisotropic resistance distribution. A transition from macroscopic
isotropy to macroscopic anisotropy is found as the hierarchical parameterR is increased.
For R < Rc = 5

3, the system may restore macroscopic isotropy independently of the degree
of basic anisotropyr on the microscopic scale, while forR > Rc, the recovery of isotropy on
the macroscopic scale can no longer be observed, and the degree of macroscopic anisotropy
depends on the hierarchical parameterR as well as the microscopic anisotropyr. It is
suspected that this transition may be observed experimentally, for example, in some transport
phenomena in fractal media, where the hierarchical parameterR may be temperature
dependent.
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